相关动态
启发式搜索简介
2024-11-10 15:30

启发式搜索(Heuristically Search)又称为有信息搜索(Informed Search),它是利用问题拥有的启发信息来引导搜索,达到减少搜索范围、降低问题复杂度的目的,这种利用启发信息的搜索过程称为启发式搜索。简而言之,就是你搜索打出前几个字,就会弹出一些可能你想要的东西了。

启发式搜索简介

启发式策略可以通过指导搜索向最有希望的方向前进,降低了复杂性。通过删除某些状态及其延伸,启发式算法可以消除组合爆炸,并得到令人能接受的解(通常并不一定是最佳解)。

然而,启发式策略是极易出错的。在解决问题的过程中启发仅仅是下一步将要采取措施的一个猜想,常常根据经验和直觉来判断。由于启发式搜索只有有限的信息(比如当前状态的描述),要想预测进一步搜索过程中状态空间的具体行为则很难。一个启发式搜索可能得到一个次最佳解,也可能一无所获。这是启发式搜索固有的局限性。这种局限性不可能由所谓更好的启发式策略或更有效的搜索算法来消除。一般说来,启发信息越强,扩展的无用节点就越少。引入强的启发信息,有可能大大降低搜索工作量,但不能保证找到最小耗散值的解路径(最佳路径)。因此,在实际应用中,最好能引入降低搜索工作量的启发信息而不牺牲找到最佳路径的保证。 

什么是启发式搜索(heuristic  search

  利用当前与问题有关的信息作为启发式信息,这些信息是能够提升查找效率以及减少查找次数的。

如何使用这些信息,我们定义了一个估价函数 h(x) 。h(x)是对当前状态x的一个估计,表示 x状态到目标状态的距离。

1、h(x) >= 0 ;  2、h(x)越小表示 x 越接近目标状态; 3、如果 h(x) ==0 ,说明达到目标状态。

与问题相关的启发式信息都被计算为一定的 h(x) 的值,引入到搜索过程中。

  然而,有了启发式信息还不行,还需要起始状态到 x 状态所花的代价,我们称为 g(x) 。比如在走迷宫问题、八数码问题,我们的 g(x) 就是从起点到 x 位置花的步数 ,h(x) 就是与目标状态的曼哈顿距离或者相差的数目;在最短路径中,我们的 g(x) 就是到 x 点的权值,h(x)  就是 x 点到目标结点的最短路或直线距离。

  现在,从 h(x) 和 g(x) 的定义中不能看出,假如我们搜索依据为 F(x) 函数。

  当 F(x) = g(x) 的时候就是一个等代价搜索,完全是按照花了多少代价去搜索。比如 bfs,我们每次都是从离得近的层开始搜索,一层一层搜 ;以及dijkstra算法,也是依据每条边的代价开始选择搜索方向。 

  当F(x) = h(x) 的时候就相当于一个贪婪优先搜索。每次都是向最靠近目标的状态靠近。

  人们发现,等代价搜索虽然具有完备性,能找到最优解,但是效率太低。贪婪优先搜索不具有完备性,不一定能找到解,最坏的情况下类似于dfs。

  这时候,有人提出了A算法。令F(x) = g(x) + h(x) 。这里的 h(x) 没有限制)。虽然提高了算法效率,但是不能保证找到最优解,不适合的 h(x)定义会导致算法找不到解。不具有完备性和最优性

  几年后有人提出了 A*算法。该算法仅仅对A算法进行了小小的修改。并证明了当估价函数满足一定条件,算法一定能找到最优解。估价函数满足一定条件的算法称为A*算法。

它的限制条件是 F(x) = g(x) + h(x) 。 代价函数g(x) >0 ;h(x) 的值不大于x到目标的实际代价 h*(x) 。即定义的 h(x) 是可纳的,是乐观的

怎么理解第二个条件呢

  打个比方:你要从x走到目的地,那么 h(x) 就是你感觉或者目测大概要走的距离,h*(x) 则是你到达目的地后,发现你实际走了的距离。你预想的距离一定是比实际距离短,或者刚好等于实际距离的值。这样我们称你的 h(x) 是可纳的,是乐观的。

    以上就是本篇文章【启发式搜索简介】的全部内容了,欢迎阅览 ! 文章地址:http://tiush.xhstdz.com/quote/1581.html 
     栏目首页      相关文章      动态      同类文章      热门文章      网站地图      返回首页 物流园资讯移动站 http://tiush.xhstdz.com/mobile/ , 查看更多   
发表评论
0评