推广 热搜: 行业  设备    参数  系统  经纪    教师  机械  中国 

Flink通讯模型—Akka与Actor模型,不愧是阿里大佬

   日期:2024-12-07     作者:ix8dc    caijiyuan   评论:0    移动:http://tiush.xhstdz.com/mobile/news/10432.html
核心提示:Flink通讯模型—Akka与Actor模型,不愧是阿里大佬模型先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂
Flink通讯模型—Akka与Actor模型,不愧是阿里大佬 模型

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

正文

在Actor模型中,actor是一个并发原语,简单的说,一个actor就是一个工人,与进程或线程一样都能够工作或处理任务。其实这还有点不好理解,我们可以把它想象成面向对象编程语言中的一个对象实例。在OOP中一个对象可以访问或修改另一个对象的属性,也可以直接调用另一个对象的方法。例如下图,person1给person2发送了一个消息,直接调用方法就行了。深入底层执行逻辑的话,结果就是JVM转到sayHello的代码区,一步步执行。

 

sayHello在一个线程中执行基本没有问题,但是多个线程执行时,就可能出问题了,因为在执行sayHello的时候person2的name值可能被其他线程修改。这是一个name字段,意外修改没有关系,但如果是一个金额字段呢

actor和对象的不同之处在于,actor的状态不能直接读取、修改,actor的方法不能直接调用。actor只能通过消息传递的方式与外界通信。

每个对象都有一个this指针,代表对象的地址,可以通过该地址调用方法或存取状态

与此类似actor也有一个代表本身的地址,但只能向该地址发送消息。

简单点说,actor通过消息传递的方式与外界通信。消息传递是异步的。每个actor都有一个邮箱,该邮箱接收并缓存其他actor发过来的消息,actor一次只能同步处理一个消息,处理消息过程中,除了可以接收消息,不能做任何其他操作。这就是actor模型的本质。

Actor模型的另一个好处就是可以消除共享状态,因为它每次只能处理一条消息,所以actor内部可以安全的处理状态,而不用考虑锁机制。

说白了如果是个普通对象,它内部是异步的,你获取到的属性,可能已经是修改过后的,这样不线程安全。

但是akka模型中,每个actor的属性、状态等都不能直接修改,他只能接收message,有个mailbox来专门存储接收message,可以异步接收这个message然后存储进来,但是只能一条一条(同步)处理这些信息,这样就安全。

Flink内部节点之间的通信是用Akka,比如JobManager和TaskManager之间的通信而operator之间的数据传输是利用Netty。

Flink通过Akka进行的分布式通信的实现,在0.9版中采用。使用Akka,所有远程过程调用现在都实现为异步消息。这主要影响组件JobManager,TaskManager 和JobClient。将来,甚至有可能将更多的组件转换为参与者,从而允许它们发送和处理异步消息。

RPC框架是Flink任务运行的基础,Flink整个RPC框架基于Akka实现,并对Akka中的ActorSystem、Actor进行了封装和使用,Flink整个通信框架的组件主要由RpcEndpoint、RpcService、RpcServer、AkkaInvocationHandler、AkkaRpcActor等构成。RpcEndpoint定义了一个Actor的路径;RpcService提供了启动RpcServer、执行代码体等方法;RpcServer/AkkaInvocationHandler提供了与Actor通信的接口;AkkaRpcActor为Flink封装的Actor。

**一、**Akka与Actor模型

Akka是一个开发并发、容错和可伸缩应用的框架。它是Actor Model的一个实现,和Erlang的并发模型很像。在Actor模型中,所有的实体被认为是独立的actors。actors和其他actors通过发送异步消息通信。Actor模型的强大来自于异步。它也可以显式等待响应,这使得可以执行同步操作。但是,强烈不建议同步消息,因为它们限制了系统的伸缩性。每个actor有一个邮箱(mailbox),它收到的消息存储在里面。另外,每一个actor维护自身单独的状态。一个Actors网络如下所示

每个actor是一个单一的线程,它不断地从其邮箱中poll(拉取)消息,并且连续不断地处理。对于已经处理过的消息的结果,actor可以改变它自身的内部状态或者发送一个新消息或者孵化一个新的actor。

1、 Actor系统

一个Actor系统包含了所有存活的actors。它提供的共享服务包括调度、配置和日志等。Actor系统同时包含一个线程池,所有actor从这里获取线程。

多个Actor系统可以在一台机器上共存。如果一个Actor系统通过RemoteActorRefProvider启动,它就可以被其他机器上的Actor系统发现。Actor系统能够自动识别消息是发送给本地机器还是远程机器的Actor系统。在本地通信的情况下,消息通过共享存储器高效的传输。在远程通信的情况下,消息通过网络栈发送。

所有Actors都是继承来组织的。每个新创建的actor将其创建的actor视作父actor。继承被用来监督。每个父actor对自己的子actor负责监督。如果在一个子actor发生错误,父actor将会收到通知。如果这个父actor可以解决这个问题,它就重新启动这个子actor。如果这个错误父actor无法处理,它可以把这个错误传递给自己的父actor。

第一个actor通过系统创建,由/user 这个actor负责监督。详细的Actor的继承制度可以参考https://doc.akka.io//docs/akka/snapshot/general/supervision.html。

2、 Flink中的Actor

Actor是一个包含状态和行为的容器。actor线程顺序处理收到的消息。这样就让用户摆脱锁和线程管理的管理,因为一次只有一个线程对一个actor有效。但是,必须确保只有这个actor线程可以处理其内部状态。Actor的行为由receive函数定义,该函数包含收到的消息的处理逻辑。

Flink系统由3个分布式组件构成:JobClient,JobManager和TaskManager。JobClient从用户处得到Flink Job,并提交给JobManager。JobManager策划这个job的执行。首先,它分配所需的资源,主要就是TaskManagers上要执行的slot。

在资源分配之后,JobManager部署单独的任务到响应的TaskManager上。一旦收到一个任务,TaskManager产生一个线程用来执行这个任务。状态的改变,比如开始计算或者完成计算,将被发送回JobManager。基于这些状态的更新,JobManager将引导这个job的执行直到完成。一旦一个job被执行完,其结果将会被发送回JobClient。Job的执行图如下所示

3、 异步VS同步消息

在任何地方,Flink尝试使用异步消息和通过futures来处理响应。Futures和很少的几个阻塞调用有一个超时时间,以防操作失败。这是为了防止死锁,当消息丢失或者分布式足觉crash。但是,如果在一个大集群或者慢网络的情况下,超时可能会使得情况更糟。因此,操作的超时时间可以通过“akka.timeout.timeout”来配置。

在两个actor可以通信之前,需要获取一个ActorRef。这个操作的查找同样需要一个超时。为了使得系统尽可能快速的失败,如果一个actor还没开始,超时时间需要被设置的比较小。为了以防经历查询超时,可以通过“akka.lookup.timeout”配置增加查询时间。

Akka的另一个特点是限制发送的最大消息大小。原因是它保留了同样数据大小的序列化buffer和不想浪费空间。如果你曾经遇到过传输失败,因为消息超过了最大大小,你可以增加“akka.framesize”配置来增加大小。

下面分别是JobManager和TaskManager的概念图

其中Dispatcher、ResourceManager、JobMaster是JobManager进程中的Rpc服务,TaskExecutor是TaskManager进程中的Rpc服务,MetricQueryService在JobManager和TaskManager进程中都有。

RpcGateway
  1. 用于定义RPC协议,是客户端和服务端沟通的桥梁。
  2. 服务端实现了RPC协议,即实现了接口中定义的方法,做具体的业务逻辑处理
  3. 客户端实现了RPC协议,客户端是Proxy生成的代理对象,将对RpcGateway接口方法的调用转为Akka的消息发送。
RpcEndpoint
  1. RPC服务端的抽象,实现了该接口即为Rpc服务端,是Akka中Actor的封装。
  2. Actor收到ActorRef发送的消息(消息被封装为RpcInvocation对象),会通过RpcInvocation对象中的方法、参数等信息以反射的方式调用RpcGateway接口对应的方法。
RpcService
  1. 是 RpcEndpoint 的运行时环境是Akka中ActorSystem的封装
  2. 一个ActorSystem系统中有多个Actor,同样在Flink中一个RpcService中有多个RpcEndpoint,即多个Rpc服务。
  3. Flink中RpcService也有多套,JobManager和TaskManager进程中都有两套RpcService。
  4. RpcService 提供了启动Rpc服务(startServer)、停止Rpc服务(stopServer)、连接远端Rpc服务等方法
  5. 实现类是AkkaRpcService,内有属性ActorSystem actorSystem,Map<ActorRef, RpcEndpoint> actors。
RpcServer

是Rpc服务端自身的代理对象,设计上是供服务端调用自身非Rpc方法。

**二、**使用Akka

Akka系统的核心ActorSystem和Actor,若需构建一个Akka系统,首先需要创建ActorSystem,创建完ActorSystem后,可通过其创建Actor(注意:Akka不允许直接new一个Actor,只能通过 Akka 提供的某些 API 才能创建或查找 Actor,一般会通过 ActorSystem#actorOf和ActorContext#actorOf来创建 Actor,另外,我们只能通过ActorRef(Actor的引用,其对原生的 Actor 实例做了良好的封装,外界不能随意修改其内部状态)来与Actor进行通信。如下代码展示了如何配置一个Akka系统。

 

1、 Actor路径

在Akka中,创建的每个Actor都有自己的路径,该路径遵循ActorSystem 的层级结构,大致如下

1)本地路径

在上面代码中,本地Actor路径为 akka://sys/user/helloActor

含义如下

  • sys,创建的ActorSystem的名字
  • user,通过ActorSystem#actorOf和ActorContext#actorOf 方法创建的 Actor 都属于/user下,与/user对应的是/system, 其是系统层面创建的,与系统整体行为有关,在开发阶段并不需要对其过多关注
  • helloActor,我们创建的HelloActor

2)远程路径

在上面代码中,远程Actor路径为 akka.tcp://sys@l27.0.0.1:2020/user/remoteActor

含义如下

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导,让我们一起学习成长

学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据 [外链图片转存中…(img-KS65esTP-1713124259156)]

本文地址:http://tiush.xhstdz.com/news/10432.html    物流园资讯网 http://tiush.xhstdz.com/ , 查看更多

特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。

 
 
更多>同类最新文章
0相关评论

文章列表
相关文章
最新动态
推荐图文
最新文章
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号