推广 热搜: 行业  机械  设备    经纪  教师  系统  参数    蒸汽 

python 文本分析库_Python数据挖掘——文本分析

   日期:2024-11-10     移动:http://tiush.xhstdz.com/mobile/quote/62098.html

作者 | zhouyue65

python 文本分析库_Python数据挖掘——文本分析

来源 | 君泉计量

原文 | Python数据挖掘——文本分析

文本挖掘:从大量文本数据中抽取出有价值的知识,并且利用这些知识重新组织信息的过程。

一、语料库(Corpus

语料库是我们要分析的所有文档的集合。

二、中文分词

2.1 概念

中文分词(Chinese Word Segmentation:将一个汉字序列切分成一个一个单独的词。

eg:我的家乡是广东省湛江市-->我/的/家乡/是/广东省/湛江市

停用词(Stop Words

数据处理时,需要过滤掉某些字或词

√泛滥的词,如web、网站等。

√语气助词、副词、介词、连接词等,如 的,地,得

2.2 安装Jieba分词包

最简单的方法是用CMD直接安装:输入pip install jieba,但是我的电脑上好像不行。

后来在这里:https://pypi.org/project/jieba/#files下载了jieba0.39解压缩后 放在Python36Libsite-packages里面,然后在用cmd,pip install jieba 就下载成功了,不知道是是什么原因。

然后我再anaconda 环境下也安装了jieba,先在Anaconda3Lib这个目录下将jieba0.39的解压缩文件放在里面,然后在Anaconda propt下输入 pip install jieba,如下图

2.3 代码实战

jieba最主要的方法是cut方法

jieba.cut方法接受两个输入参数:

1) 第一个参数为需要分词的字符串

2)cut_all参数用来控制是否采用全模式

jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细

注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode

jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list代码示例( 分词 )

输出结果为: 我 爱

Python

工信处

女干事

每月 经过 下属 科室 都 要 亲口

交代

24 口 交换机 等 技术性 器件 的 安装

工作

分词功能用于专业的场景

会出现真武七截阵和天罡北斗阵被分成几个词。为了改善这个现象,我们用导入词库的方法。

但是,如果需要导入的单词很多,jieba.add_word()这样的添加词库的方法就不高效了。

我们可以用jieba.load_userdict(‘D:\PDM\2.2\金庸武功招式.txt’)方法一次性导入整个词库,txt文件中为每行一个特定的词。

2.3.1 对大量文章进行分词

先搭建语料库

分词后我们需要对信息处理,就是这个分词来源于哪个文章。

四、词频统计

3.1词频(Term Frequency

某个词在该文档中出现的次数。

3.2利用Python进行词频统计

3.2.1 移除停用词的另一种方法,加if判断

代码中用到的一些常用方法

分组统计

判断一个数据框中的某一列的值是否包含一个数组中的任意一个值

取反(对布尔值

四、词云绘制

词云(Word Cloud:是对文本中词频较高的分词,给与视觉上的突出,形成“关键词渲染”,从而国旅掉大量的文本信息,使浏览者一眼扫过就可以领略文本的主旨。

4.1 安装词云工具包

这个地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/ ,可以搜到基本上所有的Python库,进去根据自己的系统和Python的版本进行下载即可。

在python下安装很方便,在anaconda下安装费了点劲,最终将词云的文件放在C:UsersAdministrator 这个目录下才安装成功。

五、美化词云(词云放入某图片形象中

六、关键词提取

结果如下:

七、关键词提取实现

词频(Term Frequency:指的是某一个给定的词在该文档中出现的次数。

计算公式: TF = 该次在文档中出现的次数

逆文档频率(Inverse document Frequency:IDF就是每个词的权重,它的大小与一个词的常见程度成反比

计算公式:IDF = log(文档总数/(包含该词的文档数 - 1

TF-IDF(Term Frequency-Inverse document Frequency:权衡某个分词是否关键词的指标,该值越大,是关键词的可能性就越大。

计算公式:TF - IDF = TF * IDF

7.1文档向量化

7.2代码实战作者 | zhouyue65

来源 | 君泉计量

原文 | Python数据挖掘——文本分析

文本挖掘:从大量文本数据中抽取出有价值的知识,并且利用这些知识重新组织信息的过程。

一、语料库(Corpus

语料库是我们要分析的所有文档的集合。

二、中文分词

2.1 概念

中文分词(Chinese Word Segmentation:将一个汉字序列切分成一个一个单独的词。

eg:我的家乡是广东省湛江市-->我/的/家乡/是/广东省/湛江市

停用词(Stop Words

数据处理时,需要过滤掉某些字或词

√泛滥的词,如web、网站等。

√语气助词、副词、介词、连接词等,如 的,地,得

2.2 安装Jieba分词包

最简单的方法是用CMD直接安装:输入pip install jieba,但是我的电脑上好像不行。

后来在这里:https://pypi.org/project/jieba/#files下载了jieba0.39解压缩后 放在Python36Libsite-packages里面,然后在用cmd,pip install jieba 就下载成功了,不知道是是什么原因。

然后我再anaconda 环境下也安装了jieba,先在Anaconda3Lib这个目录下将jieba0.39的解压缩文件放在里面,然后在Anaconda propt下输入 pip install jieba,如下图

2.3 代码实战

jieba最主要的方法是cut方法

jieba.cut方法接受两个输入参数:

1) 第一个参数为需要分词的字符串

2)cut_all参数用来控制是否采用全模式

jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细

注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode

jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list代码示例( 分词 )

输出结果为: 我 爱

Python

工信处

女干事

每月 经过 下属 科室 都 要 亲口

交代

24 口 交换机 等 技术性 器件 的 安装

工作

分词功能用于专业的场景

会出现真武七截阵和天罡北斗阵被分成几个词。为了改善这个现象,我们用导入词库的方法。

但是,如果需要导入的单词很多,jieba.add_word()这样的添加词库的方法就不高效了。

我们可以用jieba.load_userdict(‘D:\PDM\2.2\金庸武功招式.txt’)方法一次性导入整个词库,txt文件中为每行一个特定的词。

2.3.1 对大量文章进行分词

先搭建语料库

分词后我们需要对信息处理,就是这个分词来源于哪个文章。

四、词频统计

3.1词频(Term Frequency

某个词在该文档中出现的次数。

3.2利用Python进行词频统计

3.2.1 移除停用词的另一种方法,加if判断

代码中用到的一些常用方法

分组统计

判断一个数据框中的某一列的值是否包含一个数组中的任意一个值

取反(对布尔值

四、词云绘制

词云(Word Cloud:是对文本中词频较高的分词,给与视觉上的突出,形成“关键词渲染”,从而国旅掉大量的文本信息,使浏览者一眼扫过就可以领略文本的主旨。

4.1 安装词云工具包

这个地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/ ,可以搜到基本上所有的Python库,进去根据自己的系统和Python的版本进行下载即可。

在python下安装很方便,在anaconda下安装费了点劲,最终将词云的文件放在C:UsersAdministrator 这个目录下才安装成功。

五、美化词云(词云放入某图片形象中

六、关键词提取

结果如下:

七、关键词提取实现

词频(Term Frequency:指的是某一个给定的词在该文档中出现的次数。

计算公式: TF = 该次在文档中出现的次数

逆文档频率(Inverse document Frequency:IDF就是每个词的权重,它的大小与一个词的常见程度成反比

计算公式:IDF = log(文档总数/(包含该词的文档数 - 1

TF-IDF(Term Frequency-Inverse document Frequency:权衡某个分词是否关键词的指标,该值越大,是关键词的可能性就越大。

计算公式:TF - IDF = TF * IDF

7.1文档向量化

本文地址:http://tiush.xhstdz.com/quote/62098.html    物流园资讯网 http://tiush.xhstdz.com/ , 查看更多

特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。


0相关评论
相关最新动态
推荐最新动态
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号